
Ruby
Monstas

Session 17: Interlude: Encryption

Encryption

What comes to mind if you think about
encryption?

Encryption

TLS HTTPS

Caesar Cipher
Enigma

Public Key
Encryption

Symmetric Encryption

Digital Signatures

Passwords

Encryption Keys

AES

PGP/GPG

Certificates Crypto Currencies

NSA

End-to-end

SHA-1

VPN
Quantum
Cryptography

Elliptic curves

SSH
Privacy

Encryption

MAGIC!

Encryption

MAGIC!
MATH!

Mathematical Ingredients

● Long integers
● Multiplication
● Exponentiation
● Division
● Modulo
● Prime numbers

No math details in this talk though!

Topics

● Symmetric Encryption
● Random numbers
● Asymmetric (public key) Encryption
● Cryptographic Hash Functions

A bit of history

Source: https://en.wikipedia.org/wiki/Cryptography

Caesar cipher

Scytale

Enigma

https://en.wikipedia.org/wiki/Cryptography

Symmetric encryption

Symmetric encryption

Symmetric encryption

Symmetric
encryption
algorithm

Symmetric
decryption
algorithm

Symmetric encryption
Examples:
● AES (Rijndael)
● DES, 3DES
● Blowfish

Advantage: Generally good performance
Disadvantage: Both parties need to know the key

Symmetric encryption

Problem: People’s brains are terrible at
generating keys!

If the key or even only part of it can be
guessed, it makes an attack easier (brute
force).

Random numbers
Why random numbers?

Keys (e.g. to encrypt things with) are generated from random
numbers.

Caveat: It’s hard to generate truly random numbers!

Computers are deterministic machines by definition. Where can
the randomness come from?

Random numbers

https://xkcd.com/221/

How not to do it:

https://xkcd.com/221/

Random numbers

What to do instead:

Collect truly random data (so-called entropy)
and generate random numbers from it!

% xxd -l 16 -p /dev/random
03515dce8971a29f6764c0c275784ec0

Random numbers

What can happen?
Wikipedia: Prominent random number generator attacks

When part of the key is predictable it can take
attackers orders of magnitude less time to
guess the key!

https://en.wikipedia.org/wiki/Random_number_generator_attack#Prominent_examples

Symmetric encryption

require 'openssl'

ALGORITHM = 'AES-256-CBC'

puts 'Enter message to encrypt:'
message = gets.chomp

cipher = OpenSSL::Cipher.new(ALGORITHM)

key = cipher.random_key
hex_key = key.unpack('H*').first

puts "Randomly generated key in hexadecimal: #{hex_key}"

cipher.encrypt
cipher.key = key

encrypted_message = cipher.update(message)
encrypted_message << cipher.final

hex_encrypted_message = encrypted_message.unpack('H*').first

puts "Encrypted message in hexadecimal: #{hex_encrypted_message}"

% ruby aes_encrypt.rb
Enter message to encrypt:
Hello, Bob!
Randomly generated key in
hexadecimal:
52b0278e72ef57afdfae73baf1145d4309
4c8ba071e8c5dd7449c99dfa0fe146
Encrypted message in hexadecimal:
d789d4b1d816d150e146d857e927ac8b

Symmetric encryption

require 'openssl'

ALGORITHM = 'AES-256-CBC'

puts 'Enter key to decrypt with (in hexadecimal):'
hex_key = gets.chomp

puts 'Enter message to decrypt (in hexadecimal):'
hex_message = gets.chomp

cipher = OpenSSL::Cipher.new(ALGORITHM)

key = [hex_key].pack('H*')
message = [hex_message].pack('H*')

cipher.decrypt
cipher.key = key

message = cipher.update(message)
message << cipher.final

puts "Decrypted message: #{message}"

% ruby aes_decrypt.rb
Enter key to decrypt with (in
hexadecimal):
52b0278e72ef57afdfae73baf1145d4309
4c8ba071e8c5dd7449c99dfa0fe146
Enter message to decrypt (in
hexadecimal):
d789d4b1d816d150e146d857e927ac8b
Decrypted message: Hello, Bob!

Asymmetric (public key) encryption
1. Generating a key pair

Key generation
algorithm

Alice’s
private key

Alice’s
public key Key generation

algorithm

Bob’s
private key

Bob’s
public key

Asymmetric (public key) encryption
2. Publishing keys

Alice’s
private key

Alice’s
public key

Bob’s
private key

Bob’s
public key

Asymmetric (public key) encryption
3. Encryption using Bob’s public key

Asymmetric
encryption
algorithm

Bob’s
public key

Asymmetric (public key) encryption
4. Decryption using Bob’s private key

Asymmetric
decryption
algorithm

Bob’s private key

Asymmetric (public key) encryption
5. Encryption using Alice’s public key

Asymmetric
encryption
algorithm

Alice’s
public key

Asymmetric (public key) encryption
5. Decryption using Alice’s private key

Asymmetric
decryption
algorithm

Alice’s
private key

Asymmetric (public key) encryption
Examples:
● RSA
● ElGamal
● PGP

Advantage: Public keys can be exchanged in the open
Disadvantage: Generally slower than symmetric crypto

Asymmetric (public key) encryption

Public keys are public. Anyone can use them.
How does Bob know the message is from Alice
and vice versa?

Enter: Cryptographic Hash Functions!

Use: “Digesting” an arbitrary length text into a
value of fixed length:

% echo 'Hello, Bob!' | shasum -a 256
c4aaca0f9c0d691671659dfbcdf030d6009c2551fb53e4761a30cb29fc5f9ffb -

Cryptographic Hash Functions

The ideal cryptographic hash function has five main properties:
● it is deterministic so the same message always results in the same hash
● it is quick to compute the hash value for any given message
● it is infeasible to generate a message from its hash value except by trying

all possible messages
● a small change to a message should change the hash value so extensively

that the new hash value appears uncorrelated with the old hash value
● it is infeasible to find two different messages with the same hash value

Source: Wikipedia: Cryptographic hash function

Cryptographic Hash Functions

https://en.wikipedia.org/wiki/Cryptographic_hash_function

Cryptographic Hash Functions
How are passwords stored, e.g. for your Gmail account?

Possibility: In plain text

Disadvantage: If your database gets stolen, all your users’
passwords are compromised!

Better idea: Use a cryptographic hash function!

Cryptographic Hash Functions

Cryptographic
hash function

Additional benefit: All the
stored, hashed
passwords have the
same length!

Data-
base

Sign up:

Better idea: Use a cryptographic hash function!

Cryptographic Hash Functions

Cryptographic
hash function

Data-
base

Log in:

What if two users choose the same password by chance?

An attacker could use that information if the database gets
compromised!

Solution: Salt your password!

Cryptographic Hash Functions

Cryptographic Hash Functions

Cryptographic
hash function

Data-
base

Sign up:
“Salt”

Cryptographic Hash Functions

Cryptographic
hash function

Data-
base

Log in:

“Salt”

Password hashing and salting in Ruby using bcrypt gem:

Cryptographic Hash Functions

Handy: bcrypt puts the password hash and the salt in the same String!

Caveat: Bcrypt doesn’t actually use a cryptographic hash function, but the Blowfish symmetric cipher. The principle stays the same though!

irb(main):001:0> require 'bcrypt'
=> true
irb(main):005:0> password_hash = BCrypt::Password.create("Password123!")
=> "$2a$10$yxazpyL1iZ7lpLr/c8w4l.Eyii7oI3pRwmyw1gS/euLF4CJEtz6RK"
irb(main):006:0> password_object = BCrypt::Password.new(password_hash)
=> "$2a$10$yxazpyL1iZ7lpLr/c8w4l.Eyii7oI3pRwmyw1gS/euLF4CJEtz6RK"
irb(main):007:0> password_object == 'wrong password'
=> false
irb(main):008:0> password_object == 'Password123!'
=> true

Cryptographic Hash Functions

Security as of mid 2018:
● MD5 is considered broken
● SHA-1 is considered broken
● SHA256 or other SHA variants with longer

bit lengths should be used

Putting it all together
1. Calculating a cryptographic hash over the message

Cryptographic
hash function

Putting it all together

Asymmetric
encryption
algorithm

Alice’s
private key

2. Encrypting the hash using Alice’s private key

Putting it all together

Asymmetric
encryption
algorithm

3. Encrypting message + signature using Bob’s public key

Bob’s
public key

Putting it all together
4. Decryption using Bob’s private key

Asymmetric
decryption
algorithm

Bob’s private key

Putting it all together
5. Decryption of signature using Alice’s public key

Asymmetric
decryption
algorithm

Alice’s
public key

Putting it all together
6. Calculating a cryptographic hash over the message and
comparing to Alice’s decrypted signature

Cryptographic
hash function

PGP/GPG

This is how PGP/GPG works!

Bonus: Diffie-Hellman Key Exchange

Turing Award 2015:
Whitfield Diffie, Martin E. Hellman

(public)

Source: Wikipedia: Diffie-Hellman Key Exchange

DiffieMerkle Hellman

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange

Take-home messages

Use well-researched, public algorithms!
Don’t implement your own crypto algorithms!
Use secure sources of randomness!
Keep your private keys private!

