Exercises - Session 27

In case you get stuck anywhere, don’t be afraid to ask the coaches! They are here to
help and will gladly explain everything to you! Take notes during the exercises. Even if
you never look at them again, they will help you memorise things!

1. Code Puzzle (Repetition Ruby Bascis)

In this puzzle, you get a bit of code as a precondition. So with this code executed, you have to program a

single line (think irb) that yields the return value. Sometimes the code is already given and you have to

provide the expected return value.

Hint: Don’t just type code into your irb, think about what you expect or what needs to be done to yield the

return value. You can obviously read documentation, but try to find the solution first yourself.

Precondition Code Return value
a = [1, 2, 3] a.class
a = [“one”, “two”, “three”] “one, two, three”
a = [“one”, “two”, “three”] [“ONE”, “TWO”, “THREE”]
a=1[1, 2, 3, 5, 8, 13, 20] [2, 8, 20]
a = 45 a.class
a = -23 a.abs
a =3 a.succ
a.zero? true
a = “Hello world!” a.class

a = “Hello world!”

a.slice(6, 5)

a = “Hello world!”

“hello world!”

a = “star” “rats”

a = “Every single word” [“Every”, “single”, “word”]
a = “\tweird text \n\t” “weird text”

wgo 42.0

a=1[1, 2, 3, 5, 8, 13, 20] 7

a = [“woman”, “router”, [5, 6, 4]

“text”]

a = [“woman”, “router”, [“woman”, “text”]
“text”]

a [“cool”, “nice”]
b = [“party”, “weather”]

[[“COO'L”’ “party”] 5
[“nice”, “weather”]]

a = [“woman”, “router”,
“‘teXt”]

a.all? do |element|
element.length > 3
end

a = [[“cool”, “party”],
[“nice”, “weather”]]

[“COOl”, “party”, “nice”,
“weather”]

a = [“cool”, “party”,
“nice”, “weather”]

“weather”

a = [“cool”, “party”,
“cool”, “weather”]

a = [“cool”, “party”,
“weather”]

a = {name: “Helga”, age: 42} 42
a = {name: “Helga”, age: 42} [:name, :age]
a = {name: “Helga”, age: 42} [“Helga”, 42]

2. CSV. Again.

By this point you can probably put “CSV” as a skill in your CV. We don’t want to bore you, but CSVs and

similar exchange formats are very popular and a lot of programs in use today can export to CSV. Moreover,

it's nice to work with them in a Ruby program and we’re sure you'll use them somewhere in the future when

you’ll have to solve a problem.

In addition, a lot of open data data-sets are published as CSV. Take for example the City of Zurich:

https://data.stadt-zuerich.ch/

They publish quite a few data sets on their open data platform. One interesting example is the “Wegzige

nach Jahr und Quartier” data set. It records people leaving Zurich per city quarter. It also states whether

they moved to another Canton, another country or even another continent:

https://data.stadt-zuerich.ch/dataset/bev-wegz-jahr-quartier-v2/resource/a03afa87-ddf9-4c3a-8e9c-515d7bc

b2918. This is actually the full data set since 1983. We prepared a sub-set from 2014 on the curriculum

page for you to download.

a. Try to make sense of the data. What columns do they offer? What does each column mean? Is the

data in any way redundant? Do you like the naming of the columns? If not, how would you rename

them?

https://data.stadt-zuerich.ch/
https://data.stadt-zuerich.ch/
https://data.stadt-zuerich.ch/dataset/bev-wegz-jahr-quartier-v2/resource/a03afa87-ddf9-4c3a-8e9c-515d7bcb2918
https://data.stadt-zuerich.ch/dataset/bev-wegz-jahr-quartier-v2/resource/a03afa87-ddf9-4c3a-8e9c-515d7bcb2918
https://data.stadt-zuerich.ch/dataset/bev-wegz-jahr-quartier-v2/resource/a03afa87-ddf9-4c3a-8e9c-515d7bcb2918

Hint: Use the CSV standard library (http://ruby-doc.org/stdlib-2.2.0/libdoc/csv/rdoc/CSV.html) to

solve the following tasks.

Friendly reminder: always work in steps, don'’t try to solve everything at once, try your ideas in irb.
Especially make use of CSV.table (). Read up what it offers you and try it in the irb, maybe with a

smaller CSV file you used for an earlier exercise.

Now let’s go for our first task. Select a few columns you find useful and print out the data only with

these columns.

StichtagDatJahr QuarlLang WegOrtLang
What function on Array canyouuse ______________ __ __ ___ ___ o ____
to only print the first 10 elements? It 2014 Hard Geuensee
could look something like this: 2014 Gewerbeschule Gerlafingen

2014 Alt-Wiedikon Disentis/Mustér

Now pick out a column you want to filter for. Let’s say you chose “WegKontinentLang”. Now when
you start your script, ask the user to enter a specific value for this column. Then print all the values
as above, but this time only if the value matches the value that the user has given you. If the value is

for example “Asien”, then only print rows that have the value “Asien” for “WegKontinentLang”.

d. Now pick 2 more columns and also ask for them in the beginning. It gets interesting, now you can
filter for 3 different columns. But what if the user does not want to filter for this column? If they leave
the value empty, we should not filter for it!

And that’s it. You've built a open data browser! :-)
Optional

1. Let the user analyze a certain column. If the user chooses for example “QuarLang”, print out a list

with the top 10 values and how often this value was found.
Think about how you want to analyze this and how you want to store the information first.
2. Offer to store the filtered rows to a separate CSV file. What features from the CSV standard library

can you use to generate CSV files?

http://ruby-doc.org/stdlib-2.2.0/libdoc/csv/rdoc/CSV.html

