Exercises - Session 33

In case you get stuck anywhere, don’t be afraid to ask the coaches! They are here to
help and will gladly explain everything to you! Take notes during the exercises. Even if
you never look at them again, they will help you memorise things!

Please quickly read through the documentation, as those will help you solving the

following tasks:

Sequel:

https://github.com/jeremyevans/sequel

http://sequel.jeremyevans.net/rdoc/files/doc/cheat _sheet rdoc.html

http://sequel.jeremyevans.net/documentation.html

Sinatra:

http://www.sinatrarb.com/intro.html

Introduction

In this exercise you will create a blog web application with Ruby, Sinatra and Sequel to create and edit blog
posts.

Project setup

1. Create a new directory where you can save your source code files, e.g. blog
2. Create a Gemfile and add Sinatra and Sequel to it.
3. Install the dependencies

Database setup

In order to save the created blog posts we use the Sequel gem which allows us to create, retrieve, update
and delete data from and to a database. First of all we need to create a new sqlite database with the
following command: sqlite3 blog.db .schema

Now create a new file with the name setup.rb and add some code to create a table with the name posts
and the following columns (see Sequel documentation above): id (primary key), title, content and

author.

Run the script to create the database.


https://github.com/jeremyevans/sequel
http://sequel.jeremyevans.net/rdoc/files/doc/cheat_sheet_rdoc.html
http://sequel.jeremyevans.net/documentation.html
http://www.sinatrarb.com/intro.html

Blog Application

Note: The solution for each task can be found in the Sinatra documentation (see Sinatra documentation
above).

1. Create a new file with the name app. rb and require Sinatra and Sequel. Furthermore, create the
get “/” action to fetch the posts from the database and render the posts template.

2. Create a new directory with the name views and create a new file posts.erb in this directory and
add the HTML + ruby code to render the posts.

3. Create the post “/posts” action in app.rb to retrieve a new post, save it to the database and
redirect the browser to the created post.

4. Create the get “/posts/:id” action to show the post with the given post idin app.rb.

5. Create a new file with the name post.erb in the views directory and the HTML + ruby code to
display a blog post.

6. Create the get “/posts/:id/edit” action to render the edit form and the put “/posts/:id”
action to update the post with the given post id.

7. Create a new file with the name post_edit.erb in the views directory and the HTML + ruby code
to edit a blog post.

a. You need to add <input type="hidden" name="_method" value="put"> to your
form to send the form via put instead of post.



